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BOUNDED ERROR SCHEMES FOR THE WAVE EQUATION ON COMPLEX DOMAINS∗

SAUL ABARBANEL† , ADI DITKOWSKI‡ , AND AMIR YEFET‡

Abstract. This paper considers the application of the method of boundary penalty terms (“SAT”) to
the numerical solution of the wave equation on complex shapes with Dirichlet boundary conditions. A theory
is developed, in a semi-discrete setting, that allows the use of a Cartesian grid on complex geometries, yet
maintains the order of accuracy with only a linear temporal error-bound. A numerical example, involving
the solution of Maxwell’s equations inside a 2-D circular wave-guide demonstrates the efficacy of this method
in comparison to others (e.g. the staggered Yee scheme) - we achieve a decrease of two orders of magnitude
in the level of the L2-error.
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1. Introduction. Hyperbolic systems of P.D.E.’s describing physical situations such as electro-magnetism,
acoustics, elastic waves, etc, may under many circumstances be cast as wave equations for the various field
components.

One class of problems is that of solving numerically the Dirichlet problem on complex shapes, e.g., inside
wave guides. For sufficiently non-simple geometries, the option of transforming the problem to body-fitted
coordinates is not always a viable option, especially in three space dimensions. There are other options, such
as using Cartesian grids and approximating the body shape via “staircasing”, “diagonal split cell model”,
etc (see for example Chapter 10 in reference [4]). It is well known that these devices are not very efficacious,
particularly in the high frequency regime. We shall demonstrate that “staircasing” can fail even for low
frequencies.

In this paper we consider the application of the method of boundary penalty terms (“SAT”, see references
[1], [2], [3]) to the numerical solution of the wave equation in a finite domain with Dirichlet boundary
conditions.

In Section 2 we develop the theory that allows us to use a Cartesian grid on complex geometries and yet
maintain the order accuracy with a linear temporal error-bound.

In Section 3 we construct a second order accurate scheme that fulfills the conditions imposed by the
theory presented in Section 2.

Section 4 is devoted to a numerical example – the solution of the transverse magnetic (TM) Maxwell’s
equations [4] between two concentric circles. (This configuration might be considered as a cross-section of a
very long wave-guide.) This problem is solved using four different numerical algorithms. Two of them solve
the first order system with “staircasing” – the Yee staggered scheme [6] and a 4th order spatially staggered
scheme due to Turkel and Yefet [5]. The other two solve the wave equation directly on a non-staggered
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Cartesian grid, one with the SAT formulation and one without. All three “standard” (non-SAT) algorithms
have very large errors; the SAT algorithm has errors that are at least two order of magnitude smaller.
Summary and conclusions, and ideas for future work are presented in Section 5.

2. Theoretical Framework of the Method. In reference [1], [2] and [3], it was shown how the case
of a one-dimensional P.D.E. can be used as a building block for the multidimensional case for constructing
error-bounded algorithms over complex geometries with Dirichlet boundary condition. We therefore start
with the following one-dimensional problem:

∂2u

∂t2
=

∂2u

∂x2
+ f(x, t); ΓL ≤ x ≤ ΓR, t > 0(2.1)

u(x, 0) = u0(x)(2.0a)

∂

∂t
u(x, 0) = ut0(x)(2.0b)

u(ΓL, t) = gL(t)(2.0c)

u(ΓR, t) = gR(t)(2.0d)

and f(x, t) ∈ C2.
Let us discretize (2.1) spatially on the uniform grid presented in Figure 2.1. Note that the boundary

points do not necessarily coincide with x1 and xN . Set xj+1 − xj = h, 1 ≤ j ≤ N − 1; x1 − ΓL = γLh,
0 ≤ γL < 1; ΓR − xN = γRh, 0 ≤ γR < 1.

x x x x x x x x
1 2 3 j-1 j j+i N-2 N-1 N

x

x=h∆
γ h
LΓ

RL
Γ

γ h
R

Fig. 2.1. One dimensional grid.

Since, unlike the cases discussed in [1], [2], equation (2.1) has a second time derivative, attempts to
apply naively the methods presented there fail. The reason is that if we follow the procedure used there and
write the following discrete approximation to (2.1),

d2

dt2
u = Du + f(t) + Te(2.2)

where u is the projection of the exact solution u(x, t) onto the grid, i.e. u(xj , t) = uj(t)
4
= u(t); and write

the numerical scheme

d2v
dt2

=
[
Dv − τL(ALv − gL)− τR(ARv − gR)

]
+ f(t) ,(2.3)
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then the equation for the error vector ε = u− v becomes

d2 ε

dt2
= M ε + T .(2.4)

In the above, v is the numerical approximation to u, and

M = D − τLAL − τRAR .(2.5)

D is a differentiation matrix of the proper order of accuracy that does not use boundary values. The matrices
AL and AR are defined by the relations

ALu = gL −TL, ARu = gR −TR ,(2.6)

i.e., each row in AL(AR) is composed of the coefficients extrapolating u to its boundary value gL(gR) at
ΓL(ΓR) to within the order of accuracy. (The error is then TL(TR).) The diagonal matrices τL and τR are
given by

τL = diag(τL1 , τL2 , · · · , τLN ); τR = diag(τR1 , τR2 , · · · , τRN ) .

The constrain on the construction of the A’s, τ ’s and D is that M in (2.4) be negative definite. The negative
definiteness of M is a necessary condition for extending the 1-D theory to the multidimensional case (see
[1],[3]). Also in (2.4)

T = Te − τLTL − τRTR = (T1, T2, · · · , Tm, · · · , TN)T .(2.7)

If the matrix M can be diagonalized∗, then

M = Q−1ΛQ(2.8)

with the diagonal matrix, Λ, having the eigenvalues of M . Defining µ = Q ε, equation (2.4) becomes

d2 µ

dt2
= Λ µ + QT

= Λ µ + T̂ .(2.9)

This is an un-coupled system of O.D.E’s. The general solution for the mth equation is:

µm(t) = cm1e
√

λmt + cm2e
−√λmt +

1√
λm

∫ t

0

sinh
(√

λm(t− s)
)
T̂m(s)ds .

Recalling that at t = 0, ε = εt = 0 (i.e. µ = µt = 0 at t = 0), the solution of (2.9) becomes:

µm(t) =
1√
λm

∫ t

0

T̂m(s) sinh
[√

λm(t− s)
]
ds .(2.10)

Note that unless all the eigenvalues of M are real and non-positive some of the
√

λm’s will have a positive
real part, in which that case at least one of the µm’s may grow exponentially in time. In order to prevent
this, we have to demand that M , in addition to being negative definite, also possess only real eigenvalues.

∗Extensive numerical evidence has shown that the M in [1],[2] (i.e. representing the second derivative to 4th and 2nd order

accuracy, respectively) has distinct eigenvalues and hence is diagonalizable.
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Furthermore, in order to use the 1-D scheme as a building block for multidimensional schemes, M should
be built in a way that verifies that the property of real negative eigenvalues carries over to the multi-
dimensional differentiating matrix. One way to achieve this goal is to construct M as a negative-definite
symmetric matrix. Then an estimate on the error bound can be derived directly from the solution (2.10),

|µm(t)| ≤ 1√|λm|
T̂mM t

where T̂mM = max0≤s≤t |T̂m(s)|. Then, for a normalized Q,

‖ ε‖ = ‖ µ‖ ≤ 1
c0
‖T̂M‖t ,(2.11)

where c0 = minm=1,···,N
√|λm|. Therefore ‖ ε‖ grows at most linearly with t.

This result, of a linear temporal bound on the error-norm, can also be derived by resorting to energy
method (see [3]), instead of directly from the solution.

Also, as mentioned before, the construction of multi-dimensional case

∂2u

∂t2
= ∇2u + f(x, t)

on complex shapes is completely analogous to the method indicated in [1], [3].

3. Construction of the Scheme. This section is devoted to the task of constructing a symmetric
negative definite matrix M for the case of a second order accurate finite difference algorithm.

Let

D =
1
h2







1 −2 1 0
1 −2 1 0
0 1 −2 1
0 0 1 −2 1

. . . . . . . . .

1 −2 1 0 0
1 −2 1 0

1 −2 1
1 −2 1




+




0
c2

c3

. . .

cN−2

cN−1

0







0 0 0 0
1 −3 3 −1

−1 4 −6 4 −1
. . . . . . . . . . . . . . .

−1 4 −6 4 −1
−1 3 −3 1

0 0 0 0
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−c̃




0 0 0
0 1 −2 1

−1 2 0 −2 1
. . . . . . . . . . . . . . .

−1 2 0 −2 1
−1 2 −1 0

0 0 0 0







(3.1)

where

ck = c2 +
cN−1 − c2

N − 3
(k − 2) ,(3.2)

and

c̃ =
cN−1 − c2

N − 3
.(3.3)

Note, that as in [2] and [3], we had to resort to using connectivity terms, the last two matrices in (3.1).

AL =




1
2
(2 + γL)(1 + γL) −γL(2 + γL)

1
2
(γL + γ2

L) 0 . . . 0
...

...
...

...
...

1
2
(2 + γL)(1 + γL) −γL(2 + γL)

1
2
(γL + γ2

L) 0 . . . 0


 ;(3.4)

AR =




0 . . . 0
1
2
(γR + γ2

R) −γR(2 + γR)
1
2
(2 + γR)(1 + γR)

...
...

...
...

...

0 . . . 0
1
2
(γR + γ2

R) −γR(2 + γR)
1
2
(2 + γR)(1 + γR)


 .(3.5)

τL =
1
h2

diag [τL1 , τL2 , τL3 , 0, . . . , 0, 0] ;(3.6)

τR =
1
h2

diag
[
0, 0, . . . , 0, τRN−2, τRN−1 , τRN

]
;(3.7)

In order to make the matrix M = D − τLAL − τRAR symmetric we choose:

c2 =
(1− γL) γL

2

cN−1 =
(1− γR) γR

2

τL2 =
3− γL − 2 γL τL1

1 + γL
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τL3 =
−2 + γL + γL τL1

2 + γL
(3.8)

τRN−1 =
3− γR − 2 γR τRN

1 + γR

τRN−2 =
−2 + γR + γR τRN

2 + γR

τL1 , τRN ≥ 4 .

(3.9)

The proof that the symmetric matrix M is indeed negative-definite is given in the Appendix to this
paper.

Note also that instead of solving (2.3) directly as a 2nd order O.D.E. system in time, one can solve

dw
dt

= [Dv − τL(ALv − gL)− τR(ARv − gR)] + f

dv
dt

= w .

(3.10)

The number of ’variables’ has increased from N to 2N but one gains in the simplicity of the time integration.

4. Numerical Example. We consider the dimensionless Maxwell’s equation for transverse magnetic
field (TM, see [4]) in two space dimensions:

∂E

∂t
=

∂Hy

∂x
− ∂Hx

∂y
(4.1)

∂Hx

∂t
= −∂E

∂y
(4.2)

∂Hy

∂t
=

∂E

∂x
(4.3)

where Hx and Hy are the x and y components of the magnetic vector, H, and E is the electric field in the
z-direction. The set (4.1)–(4.3) is to be solved in the space between two concentric circles, 1

6 < r < 1
2 . We

consider the case of perfectly conducting boundaries. Thus the boundary conditions are given by

E(1
2 , θ, t) = 0(4.4)

E(1
6 , θ, t) = 0 .(4.5)

We choose the following initial conditions (note the polar coordinates r, θ):

E(r, θ, 0) = cos θ [J1(ωr) + a Y1(ωr)](4.6)

Hy(r, θ, 0) = − sin 2θ
{ 1

2ωr
[J1(ωr) + a Y1(ωr)]

− 1
4 [J0(ωr)− J2(ωr) + a Y0(ωr) − a Y2(ωr)]

}
(4.7)

Hx(r, θ, 0) =
cos2 θ

ωr
[J1(ωr) + a Y1(ωr)]

− sin2 θ

2
[J0(ωr)− J2(ωr) + a Y0(ωr)− a Y2(ωr)](4.8)

where the Jn’s and the Yn’s are Bessel functions of the first and second kind of order n, respectively. Also,

a ∼= 1.76368380110927; ω ∼= 9.813695999428405 .(4.9)
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The exact solution of the IBV problem (4.1)–(4.8) is given by:

E(r, θ, t) = cos(ωt + θ) [J1(ωr) + a Y1(ωr)](4.10)

Hy(r, θ, t) = − 1
ωr

cos θ cos(ωt + θ) [J1(ωr) + a Y1(ωr)]

+ 1
2 cos θ sin(ωt + θ) [J0(ωr) − J2(ωr) + a Y0(ωr)− a Y2(ωr)](4.11)

Hx(r, θ, t) =
1
ωr

cos θ cos(ωt + θ) [J1(ωr) + a Y1(ωr)]

− 1
2 sin θ sin(ωt + θ) [J0(ωr)− J2(ωr) + a Y0(ωr)− a Y2(ωr)](4.12)

We note that we can extract from (4.1)–(4.3) a wave equation for the electric field E,

∂2E

∂t2
=

∂2E

∂x2
+

∂2E

∂y2
.(4.13)

The boundary conditions on E in (4.13) are given by (4.4)–(4.5). The initial condition E(r, θ, 0) is given by
(4.6). We need an additional initial condition on Et, which we obtain by differentiating (4.10), namely

Et(r, θ, 0) = −ω sin θ [J1(ωr) + a Y1(ωr)] .(4.14)

Four numerical schemes were used to solve the problem:
(i) The Yee scheme [6]. This second order accurate scheme is staggered both in space and time. This

entails putting initial conditions of Hx and Hy at ∆t/2 rather than at t = 0. These initial conditions
are derived from the exact solution. The numerical solution is carried out on the “staircased” domain
shown in Figure 4.1.

(ii) A modification of the Yee scheme (designated Ty(2,4)), see [5]. This one has 4th order spatial
accuracy and 2nd order in time. The stagger and the “staircased” domain are maintained as before.

(iii) The SAT algorithm for the wave equation described in Sections 2 and 3. The grid used for the
numerical integration is shown in the right side of Figure 4.1. The time evolution is done by a 4th

order Runge-Kutta method.
(iv) An algorithm which formally looks like the SAT in (iii), but is applied to the “staircased” domain

of Figure 4.1 (rather than SAT one). To order O(h2), this is equivalent to using a standard spatial
central differencing scheme with the nodal points at edges of the domain given the boundary value
zero. The time integration is done as in the case (iii).

We first present the L2 error in E for all four schemes at t = 1 and t = 10 for the cases ∆x = ∆y = h =
1/40, h = 1/80 and h = 1/160, see Table 1. ∆t was 2/3 h for the Yee scheme, h/18 for the Ty(2,4) scheme
and h/5 for the SAT schemes.

It is immediately apparent from the table that the SAT-error (scheme iii) is at least 2 orders of magnitude
smaller than that of the other three algorithms at all the various times and grid spacings.

Since the non-SAT schemes have errors which are unacceptably large we do not show details of their
temporal behavior. The SAT algorithm (scheme iii) has an L2 error which grows in time as shown in Figure
4.2. We see that this temporal growth is bound by a linear curve, whose slope depends on h. We note that
for all reasonable dimensionless time the error is quite small, especially for h ≤ 1/80.

5. Conclusions and Discussion.

(i) It seems quite clear from the evidence that the failure of the non-SAT schemes is due to the fact
that “staircasing” misrepresents the shape of the body. In the SAT scheme, on the other hand, the
penalty terms take account of the true shape.
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Fig. 4.1. The “staircased” domain (left) and the SAT grid (right), h = 1/40.

h = 1/40 h = 1/80 h = 1/160
t = 1

i Yee 0.4322 0.3635 0.1742
ii Ty(2,4) 0.4038 0.3347 0.1579
iii SAT 0.001203 0.0001705 1.5019e-05
iv Staircased 0.1022 0.05041 0.01936

h = 1/40 h = 1/80 h = 1/160
t = 10

i Yee 0.5101 0.4364 0.6683
ii Ty(2,4) 0.2642 0.7079 0.7243
iii SAT 0.008435 0.0008354 8.2707e-05
iv Staircased 0.7929 0.4735 0.7829

Table 4.1

The L2 error.

(ii) The numerical results validate the theoretical predictions of the temporal behavior of the L2 norm
of the error.

(iii) Grosso-modo the CPU time per node is of the same order for all schemes.
(iv) The results from Table 1 and Figure 4.2 seem to indicate that the scheme (iii) converges as h3,

although the algorithm has a truncation error of order h2. We do not understand this pleasant
anomaly, although it is possible that even with h = 1/160 we are not yet in the asymptotic conver-
gence regime.

(v) In the future, we would like to apply the SAT methodology directly to hyperbolic systems such as
(4.1)–(4.3). The theory is not complete yet.
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Fig. 4.2. SAT, L2 error vs. time.

Appendix. We decompose the matrix M , defined in (2.5) and (3.1) to (3.8) as follows:

M =
1
h2

[αM1 + (1− α)M2 + M3 + M4 + M5](5.1)

where:

M1 =




−2 1
1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −2 1

1 −2




,(5.2)

M2 =




0 0 0
0 0 0
0 0 −1 1

1 −2 1
. . . . . . . . .

1 −2 1
0 1 −1 0 0

0 0 0
0 0 0




,(5.3)
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M3 = −







0 0 0
0 −1 1
0 1 −2 1

. . . . . . . . .

1 −2 1 0
1 −1 0
0 0 0







0
c2

c3

. . .

cN−2

cN−1

0







0 0 0
0 −1 1
0 1 −2 1

. . . . . . . . .

1 −2 1 0
1 −1 0
0 0 0







,(5.4)

M4 =




m1,1
4 m1,2

4 m1,3
4

m1,2
4 m2,2

4 m2,3
4 0

m1,3
4 m2,3

4 m3,3
4

0 0




(5.5)

where:

m1,1
4 = 1 + 2α− (1 + γL) (2 + γL) τL1

2
m1,2

4 = −2− α + γL (2 + γL) τL1

m1,3
4 = 1− γL (1 + γL) τL1

2

m2,2
4 = 2α +

7γL − 4
(
1 + γ2

L

)− γL
2 (2 + γL) (1 + 4τL1)

2 (1 + γL)

m2,3
4 = 1− α− 3γL

2
+

γL
2

2
+ γL

2τL1

m3,3
4 = 2α +

−4 + γL
2 − γL

3 − γL
2 (1 + γL) τL1

2 (2 + γL)

and
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M5 =




0 0

mN−2,N−2
5 mN−1,N−2

5 mN,N−2
5

0 mN−1,N−2
5 mN−1,N−1

5 mN,N−1
5

mN,N−2
5 mN,N−1

5 mN,N
5




(5.6)

where:

mN,N
5 = 1 + 2α− (1 + γR) (2 + γR) τRN

2
mN,N−1

5 = −2− α + γR (2 + γR) τRN

mN,N−2
5 = 1− γR (1 + γR) τRN

2

mN−1,N−1
5 = 2α +

7γR − 4
(
1 + γ2

R

)− γR
2 (2 + γR) (1 + 4τRN )

2 (1 + γR)

mN−1,N−2
5 = 1− α− 3γR

2
+

γR
2

2
+ γR

2τRN

mN−2,N−2
5 = 2α +

−4 + γR
2 − γR

3 − γR
2 (1 + γR) τRN

2 (2 + γR)
.

The matrix M1 is negative-definite and bounded away from 0 by h2π2 by the argument leading to eq.
(2.4.31), see appendix to chapter 2 in [3]. M2 is non-positive definite, see eq. (2.4.34) and (2.4.35) in that
appendix. From (3.2), (3.3) and (3.8) follows that ck ≥ 0, k = 1, . . . , N , therefore, the matrix M3 is non-
positive. For a given value of 0 ≤ α ≤ 1, τL1 and τRN can be found such that the matrices M4 and M5 will
be non-positive, for all γL and γR. For example: for α = 1/10, τL1 = τRN = 4; for α = 1/2, τL1 = τRN = 9
and for α = 8/10, τL1 = τRN = 24. This completes the proof that M is indeed a negative-definite matrix,
bounded away from 0 by απ2. Therefore the norm of the error vector ‖ ε ‖ can grow at most linearly in
time, see equation (2.11).
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